Do electrostatic interactions with positively charged active site groups tighten the transition state for enzymatic phosphoryl transfer?
نویسندگان
چکیده
The effect of electrostatic interactions on the transition-state character for enzymatic phosphoryl transfer has been a subject of much debate. In this work, we investigate the transition state for alkaline phosphatase (AP) using linear free-energy relationships (LFERs). We determined k(cat)/K(M) for a series of aryl sulfate ester monoanions to obtain the Brønsted coefficient, beta(lg), and compared the value to that obtained previously for a series of aryl phosphorothioate ester dianion substrates. Despite the difference in substrate charge, the observed Brønsted coefficients for AP-catalyzed aryl sulfate and aryl phosphorothioate hydrolysis (-0.76 +/- 0.14 and -0.77 +/- 0.10, respectively) are strikingly similar, with steric effects being responsible for the uncertainties in these values. Aryl sulfates and aryl phosphates react via similar loose transition states in solution. These observations suggest an apparent equivalency of the transition states for phosphorothioate and sulfate hydrolysis reactions at the AP active site and, thus, negligible effects of active site electrostatic interactions on charge distribution in the transition state.
منابع مشابه
Experimental and computational analysis of the transition state for ribonuclease A-catalyzed RNA 2'-O-transphosphorylation.
Enzymes function by stabilizing reaction transition states; therefore, comparison of the transition states of enzymatic and nonenzymatic model reactions can provide insight into biological catalysis. Catalysis of RNA 2'-O-transphosphorylation by ribonuclease A is proposed to involve electrostatic stabilization and acid/base catalysis, although the structure of the rate-limiting transition state...
متن کاملProtonated 2'-aminoguanosine as a probe of the electrostatic environment of the active site of the Tetrahymena group I ribozyme.
We have probed the electrostatic environment of the active site of the Tetrahymena group I ribozyme (E) using protonated 2'-aminoguanosine (), in which the 2'-OH of the guanosine nucleophile (G) is replaced by an group. At low concentrations of divalent metal ion (2 mM Mg(2+)), binds at least 200-fold stronger than G or G(NH)()2, with a dissociation constant of </=1 microM from the ribozyme. ol...
متن کاملKinetic isotope effects for alkaline phosphatase reactions: implications for the role of active-site metal ions in catalysis.
Enzyme-catalyzed phosphoryl transfer reactions have frequently been suggested to proceed through transition states that are altered from their solution counterparts, with the alterations presumably arising from interactions with active-site functional groups. In particular, the phosphate monoester hydrolysis reaction catalyzed by Escherichia coli alkaline phosphatase (AP) has been the subject o...
متن کاملIsotope-edited FTIR of alkaline phosphatase resolves paradoxical ligand binding properties and suggests a role for ground-state destabilization.
Escherichia coli alkaline phosphatase (AP) can hydrolyze a variety of chemically diverse phosphate monoesters while making contacts solely to the transferred phosphoryl group and its incoming and outgoing atoms. Strong interactions between AP and the transferred phosphoryl group are not present in the ground state despite the apparent similarity of the phosphoryl group in the ground and transit...
متن کاملAn atomic model for protein-protein phosphoryl group transfer.
The high resolution crystal structures of two interacting proteins from the phosphoenolpyruvate:sugar phosphotransferase system, the histidine-containing phosphocarrier protein (HPr) and the IIA domain of glucose permease (IIA(Glc)) from Bacillus subtilis, provide the basis for modeling the transient binary complex formed during the phosphoryl group transfer. The complementarity of the interact...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 126 38 شماره
صفحات -
تاریخ انتشار 2004